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Abstract

Robust machine learning is currently one of the most

prominent topics which could potentially help shaping a fu-

ture of advanced AI platforms that not only perform well

in average cases but also in worst cases or adverse situa-

tions. Despite the long-term vision, however, existing stud-

ies on black-box adversarial attacks are still restricted to

very specific settings of threat models (e.g., single distor-

tion metric and restrictive assumption on target model’s

feedback to queries) and/or suffer from prohibitively high

query complexity. To push for further advances in this field,

we introduce a general framework based on an operator

splitting method, the alternating direction method of mul-

tipliers (ADMM) to devise efficient, robust black-box at-

tacks that work with various distortion metrics and feed-

back settings without incurring high query complexity. Due

to the black-box nature of the threat model, the proposed

ADMM solution framework is integrated with zeroth-order

(ZO) optimization and Bayesian optimization (BO), and thus

is applicable to the gradient-free regime. This results in two

new black-box adversarial attack generation methods, ZO-

ADMM and BO-ADMM. Our empirical evaluations on image

classification datasets show that our proposed approaches

have much lower function query complexities compared to

state-of-the-art attack methods, but achieve very competi-

tive attack success rates. Codes are available at https:

//github.com/LinLabNEU/Blackbox_ADMM .

1. Introduction

In recent years, deep neural networks (DNNs) have

achieved significant breakthroughs [22] in many machine

learning (ML) tasks. However, despite these success sto-

ries, there have been many recent studies showing that even

state-of-the-art DNNs might still be vulnerable to adversar-

ial misclassification attacks [15, 38, 44]. The adversarial

attacks find and add visually imperceptible noises to an orig-

inally correctly classified input and essentially cause it to

be misclassified by the DNNs. This raises security concerns

about the robustness of DNNs in extreme situations with

high reliability and dependability requirement such as face

recognition, autonomous driving car and malware detection

[34, 13, 17]. Investigating adversarial examples has become

an increasingly prevailing topic to develop potential defen-

sive measures in trustworthy ML [24, 40, 42, 41]. It essen-

tially lays the groundwork for building a new generation

of highly robust and reliable ML models acting as the core

engine of future AI technology.

However, most of preliminary studies on this topic are re-

stricted to the white-box setting where the adversary has com-

plete access and knowledge of the target system (e.g., DNNs)

[15, 21, 6, 7, 43]. Despite the theoretical interest, white-box

attack methods are not adapted to practical black-box threat

models. It is often the case that internal states/configurations

and operating mechanism of public ML systems are not re-

vealed to the practitioners (e.g., Google Cloud Vision API).

Accordingly, the only mode of interaction with the system

is via submitting inputs and receiving the corresponding

predicted outputs.

To boost the practicality of such approaches, a few re-

cent works have introduced a new class of threat models

that exploit either a surrogate of the target model [31] or a

gradient-free attack method [8, 1]. However, adversarial at-

tacks that exploit a surrogate of the target model tend to yield

low success rate if the surrogate is inaccurate. On the other

hand, while attacks that use zeroth-order gradient estimation

[8] are often more effective, they require a large number of

queries to obtain an accurate estimate. Thus they are usu-

ally not economically efficient, especially in query-limited

settings due to budget constraints.

To mitigate the above limitations of the existing literature,
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this paper introduces a new perspective in the design of black-

box adversarial attacks: We propose a general attack frame-

work based on an operator splitting method, the alternating

direction method of multipliers (ADMM), which integrates

with both zeroth-order (ZO) optimization and Bayesian opti-

mization (BO). Furthermore, unlike previous works which

for ease of optimization often assume a specific distortion

metric between an input and its perturbed version, our pro-

posed framework is amenable to a broad family of distortion

metrics including those previously used in the literature.

Our Contributions:

• We propose a general black-box adversarial attack frame-

work via ADMM, including zeroth-order ADMM (ZO-

ADMM) and ADMM with Bayesian optimization (BO-

ADMM). We exploit a promising ZO-ADMM with random

gradient estimation (RGE) [26] to design efficient black-box

attacks that generalize the previous ZO coordinate descent

based black-box attacks [8] and sidestep the notoriously

intensive query complexity of attacks based on coordinate-

wise random gradient estimation. Besides, we integrate the

ADMM with BO for higher query efficiency in black-box

settings (Section 4).

• We further generalize our formulation to accommodate

various bounded ℓp-norm-ball distortion metrics and their

linear spans in the metric space (see Section 4.1). Such

an extension is highly non-trivial to be incorporated into

existing formulations of other black-box attacks, which are

often heavily customized towards a specific norm-ball (e.g.,

ℓ2 or ℓ∞) for distortion metrics.

• Our framework is also made flexible to robustly accom-

modate for various threat models of the black-box attack

(Section 5), which includes both score-based and decision-

based settings. The former allows the attacker to have access

to a vector of assessment scores for all output candidates

(soft labels). And the latter only provides the system’s final

decision on the most probable output (hard labels).

• Finally, we demonstrate the efficiency of our proposed

framework on a variety of real-world image classification

datasets such as MNIST, CIFAR-10 and ImageNet. The em-

pirical results consistently show that our framework perform

competitively to existing works in terms of the attack suc-

cess rate while achieving a significant reduction on the query

complexity (Section 6).

2. Related Works

The vulnerability of DNNs was first studied in the seminal

works [2, 38], which were followed by a series of white-box

threat models [15, 6, 28, 45, 46] that assume full access of

the target model’s internal parameters/configurations. How-

ever, such internal knowledge of the target model is often

not revealed and the adversary can only interact with it via

submitting input queries and receiving feedback on potential

outputs. Therefore, in the remaining of this section, we will

summarize recent advances on black-box adversarial attacks

and discuss their limitations in comparison to our proposed

framework.

2.1. Black-box Attack with Surrogate Model

A black-box attack using surrogate model is essentially a

transfer attack [31] in which the adversary trains a DNN with

data labeled by the target model. The resulting DNN is then

exploited as a surrogate of the target model for which we can

apply any state-of-the-art white-box attacks without requir-

ing full access to internal states and operating mechanisms

of the target model. Such attacks however depend heavily

on the quality of training a surrogate model that closely

resembles the true target model [27]. As a result, transfer

attack tends to yield low success rate in data-intensive do-

mains (e.g., ImageNet) for which it is hard to find a qualifiled

surrogate.

2.2. Black-box Attacks with Gradient Estimation

Another approach to explore black-box attacks is to use

gradient estimation via zeroth-order optimization (ZOO) [8].

They make queries to the model and estimate the output

gradients with respect to the corresponding inputs, and then

apply the state-of-the-art C&W attack method [6] to generate

adversarial examples. However, this method is very compu-

tationally intensive as it requires a large number of queries

per iteration to generate an accurate gradient estimation. Al-

ternatively, the work [29] aims to estimate output gradient

via greedy local search. At each iteration, the proposed tech-

nique perturbs only a small subset of input component. Such

local search technique is very computationally efficient but

it does not explicitly minimize the distortion between the

original input and its perturbed version, the crafted noises

often appear more visible. The work [18] investigates the

more realistic threat models by defining the query-limited

setting, the partial information setting, and the label-only

setting. Three attacks methods are proposed based on the

Natural Evolutionary Strategies and Monte Carlo approxi-

mation. But it only puts limits on the ℓ∞ norm instead of

minimizing a certain ℓp norm. Based on [18], the work [19]

further investigates to utilize the prior information including

the time-dependent priors (i.e., successive gradients are in

fact heavily correlated) and the data-dependent priors (i.e.,

images tend to exhibit a spatially local similarity ) for higher

query efficiency.

2.3. Other Black-box Attacks

In addition to the aforementioned works, there are also

other black-box attacks [5, 39, 9, 16] under different practi-

cal settings, which are explored very recently. Among those,

the notable boundary method [5] implements a decision-

based attack, which starts from a very large adversarial per-

turbation (thus causing an immediate misclassification) and
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tries to reduce the perturbation (i.e., minimize the distor-

tion) through a random walk while remaining adversarial

via staying on the boundary between the misclassified class

and the true class. However, it suffers from high computa-

tional complexity due to a huge number of queries needed

to decrease the distortion and it also has no guarantee on

the convergence. Different from [5], the work [9] formulates

the hard-label black-box attack as a real-valued optimization

problem which is usually continuous and can be solved by

the zeroth-order optimization algorithm. Similarly, [16] ad-

dresses the problem of finding a universal (image-agnostic)

perturbation in the hard-label black-box setting.

In this paper, we will instead introduce an interesting

reformulation of adversarial black-box attack based on

ADMM, including ZO-ADMM [26] that enjoys the operator

splitting advantage of ADMM and BO-ADMM that reduces

the query complexity with the aid of Gaussian process.

3. Problem Formulation

In this work, we focus on adversarial attacks in the appli-

cation of image classification with DNNs. In what follows,

we first provide a general problem formulation for adversar-

ial attack which is amenable to either white-box or black-box

settings. Then, we will develop an efficient solution to the

more interesting black-box setting where the adversary only

has access to certain types of output of the DNN model (its

internal structures and configurations are unknown to the

adversary). Specifically, given a legitimate image x0 ∈ R
d

with its correct class label t0, we aim to design an optimal

adversarial perturbation δ ∈ R
d so that the perturbed exam-

ple (x0 + δ) is misclassified to target class t �= t0 by the

DNN model trained on legitimate images. The adversarial

perturbation δ can be obtained by solving the problem of the

generic form,

minimize
δ

f(x0 + δ, t) + γD(δ)

subject to (x0 + δ) ∈ [0, 1]d, ‖δ‖∞ ≤ ǫ,
(1)

where f(x, t) denotes an attack loss incurred by misclassify-

ing (x0 + δ) to target class t, D(δ) is a distortion function

that controls perceptual similarity between a legitimate im-

age and an adversarial example, and ‖ · ‖∞ signifies the

ℓ∞ norm. In problem (1), the ‘hard’ constraints ensure that

the perturbed noise δ at each pixel (normalized to [0, 1]) is

imperceptible up to a predefined ǫ-tolerant threshold, and

the non-negative parameter γ places emphasis on the dis-

tortion. Furthermore, in the above problem, we mainly set

D(δ) = ‖δ‖22, which is motivated by the superior perfor-

mance of the outstanding C&W ℓ2 adversarial attack. We

highlight that D(δ) can take other forms of ℓp norms as

discussed in Section 4.1.

The problem (1) is the general form of the problem in

[18, 19] which does not consider the D(δ) term. The ad-

vantage is that we are able to minimize the ℓp distortion

after the adversarial perturbation is obtained, thus keeping

the perturbation imperceptible. More specifically, if ǫ is too

small, we may not be able to obtain a successful adversarial

example. Thus, we need to increase ǫ to achieve a successful

adversarial attack. But since ǫ only limits the largest element

of the perturbation, the whole perturbation over the image

might be relatively large and easy to be recognized in case

of large ǫ. Thus, the D(δ) term in problem (1) helps to mini-

mize the ℓp distortion of the whole perturbation, keeping it

unnoticeable.

In the remaining of this section, we will discuss possi-

ble choices for the loss function f(x, t). Note that, without

loss of generality, we only focus on targeted attack with

designated target class t to mislead the DNN since the un-

targeted attack version can be easily implemented similar to

the targeted attack [6]. We also emphasize that in the black-

box setting, the gradients of f(x, t) can not be obtained

directly as it does in the white-box setting. The form of the

loss function f(x, t) depends on the constrained information

in different black-box feedback settings. In particular, the

definition of score-based (Section 3.1) and decision-based

(Section 3.2) attacks as well as their loss functions will be

discussed in the following subsections.

3.1. Score-based Attack

In the score-based attack setting, the adversaries are able

to make queries to DNN to obtain the soft labels (i.e., scores

or probabilities of an image belonging to different classes),

while information on gradients are not available. The loss

function of problem (1) in the score-based attack is:

f(x0 + δ, t) = max{max
j �=t

{logP (x0 + δ)j}

− logP (x0 + δ)t,−κ}, (2)

which is motivated by [6] and yields the best known perfor-

mance among white-box attacks. P (x)j denotes the target

model’s prediction score or probability of the j-th class, and

κ is a confidence parameter which is usually set to zero. Ba-

sically, this implies f(x0 + δ, t) = 0 if P (x0 + δ)t is the

largest among all classes, which means the perturbation δ

has successfully made the target model misclassified x0 + δ

to target class t. Otherwise, it will be larger than zero. Note

that in Eqn. (2) the log probability logP (x) is used instead

of directly using the actual probability P (x). This is based

on the observation that the output probability distribution

tends to have one dominating class, making the query on

the probability/score less effective. The utilization of the log

operator can help to reduce the effect of the dominating class

while it preserves the probability order for all classes.

3.2. Decision-based Attack

Different from the score-based attack, the decision-based

attack is more challenging in that the adversaries can only

123



make queries to get the hard-labels instead of the soft-labels.

Let H(x)i denote the hard-label decision. H(x)i = 1 if

the decision for x is label i, and 0 otherwise. We also have
∑K

i=1 H(x)i = 1 for all K classes. Then the loss function

of problem (1) in the decision-based attack is specified as

f(x0 + δ, t) = max
j �=t

H(x0 + δ)j −H(x0 + δ)t, (3)

Therefore, f(x0+δ, t) ∈ {−1, 1}, and the attacker succeeds

if f(x0 + δ, t) = −1. The loss function (3) is nonsmooth

with discrete outputs. The decision-based attack is therefore

more challenging because existing combinatorial optimiza-

tion methods become almost ineffective or inapplicable.

4. A General Black-box Adversarial Attack

Framework

This section develops a general black-box adversarial at-

tack framework for both the score-based and decision-based

attacks by leveraging ADMM and gradient-free optimiza-

tion. We will show that the proposed attack framework yields

the following benefits: a) an efficient splitting between the

black-box loss function and the adversarial distortion func-

tion, b) generalization to various ℓp norm involved hard/soft

constraints, and c) compatibility to different gradient-free

operations. By introducing an auxiliary variable z, problem

(1) can be rewritten in the favor of ADMM-type methods

[4, 47],

minimize
δ,z

f(x0 + δ, t) + γD(z) + I(z)
subject to z = δ,

(4)

where I(z) is the indicator function given by,

I(z) =
{

0 (x0 + z) ∈ [0, 1]d, ‖z‖∞ ≤ ǫ,
∞ otherwise.

(5)

The augmented Lagrangian of the reformulated problem

(4) is given by

L(z, δ,u) = γD(z) + I(z) + f(x0 + δ, t) (6)

+uT (z− δ) +
ρ

2
‖z− δ‖22,

where u is Lagrangian multiplier, and ρ > 0 is a given

penalty parameter. It can be further transformed as below,

L(z, δ,u) = γD(z) + I(z) + f(x0 + δ, t) (7)

+
ρ

2

∥

∥

∥

∥

z − δ +
1

ρ
u

∥

∥

∥

∥

2

2

− 1

2ρ
‖u‖22 .

The ADMM algorithm [4] splits optimization variables

into two blocks and adopts the following iterative scheme,

zk+1 = argmin
z

L(z, δk,uk), (8)

δ
k+1 = argmin

δ

L(zk+1, δ,uk), (9)

uk+1 = uk + ρ(zk+1 − δ
k+1), (10)

where k denotes the iteration index. In problem (8), we

minimize L(z, δ,u) over z given parameters δk and uk. In

problem (9), we minimize L(z, δ,u) over δ given zk+1 from

the previous step and uk. Then, the Lagrangian multiplier u

is updated in Eqn. (10). The major advantage of this ADMM-

type algorithm is that it allows us to split the original complex

problem into sub-problems, each of which can be solved

more efficiently or even analytically. In what follows, we

solve problems (8) and (9) respectively.

4.1. z-step

Problem (8) can be rewritten as

minimize
z

D(z) + ρ
2γ ‖z− a‖22

subject to (x0 + z) ∈ [0, 1]d, ‖z‖∞ ≤ ǫ,
(11)

where a = δk−(1/ρ)uk. We set D(z) = ‖z‖22 [6]. Problem

(11) can be decomposed elementwise as below,

minimize
zi

(

zi − ρ
2γ+ρ

ai

)2

subject to ([x0]i + zi) ∈ [0, 1], |zi| ≤ ǫ,
(12)

where [x]i (or xi) denotes the i-th element of x. The solution

to problem (12) is then given by

[zk+1]i =

⎧

⎨

⎩

min{1− [x0]i , ǫ}
ρ

2γ+ρ
ai > min{1− [x0]i , ǫ}

max{− [x0]i ,−ǫ} ρ

2γ+ρ
ai < max{− [x0]i ,−ǫ}

ρ

2γ+ρ
ai otherwise.

(13)

Generalization to various ℓp norms. In problem (11), in

addition to the worst-case perturbation constraint ‖z‖∞ ≤ ǫ,
it is a common practice to set D(z) = ‖z‖22 to measure the

similarity between the legitimate image and the adversarial

example. If D(z) takes other ℓp norms such as ‖z‖0, ‖z‖1,

or even ℓp norm combinations like ‖z‖1+ β
2 ‖z‖22 for β ≥ 0,

we are still able to obtain the solutions with minor modifica-

tions in the z-step. This ability is highly non-trivial for other

black-box attacks, which are often heavily customized to

minimize a specific ℓp norm for distortion measure. Due to

space limitation, we explicitly show the z-step solutions of

D(z) = ‖z‖0, D(z) = ‖z‖1 and D(z) = ‖z‖1 + β
2 ‖z‖22

derived with proximal operators [32] in the supplementary

material.

4.2. δ-step

Problem (9) can be written as

minimize
δ

f(x0 + δ, t) + ρ
2‖δ − b‖22, (14)

where b = zk+1 + (1/ρ)uk. In the white-box setting, since

the gradients of f(x0+δ, t) are directly accessible, gradient

descent method like stochastic gradient descent (SGD) or
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Adam can be applied straight-forwardly. However, in black-

box settings, the gradients of f(x0 + δ, t) are unavailable.

Thus, to overcome this difficulty, we adopt two derivative-

free methods: the random gradient estimation (RGE) method

[12] and the Bayesian optimization [3] corresponding to

ZO-ADMM and BO-ADMM, respectively.

4.2.1 Random gradient estimation

In the black-box setting, the gradient of f(x0 + δ, t) is

estimated through random gradient estimation (RGE),

∇̂f(δ) = (d/(νQ))

Q
∑

j=1

[

f(δ + νuj)− f(δ)
]

uj , (15)

where d is the number of optimization variables, ν > 0
is a smoothing parameter, {uj} denote independent and

identically distributed (i.i.d.) random direction vectors drawn

from a uniform distribution over a unit sphere, and Q is the

number of random direction vectors. It has been shown in

[26] that a large Q reduces the gradient estimation error and

improves the convergence of ZO-ADMM. However, we find

that a moderate size of Q is sufficient to provide a good trade-

off between estimation error and query complexity, e.g., Q =
20 in our experiments. We also highlight that the RGE in

(15) only requires O(Q) query complexity instead of O(dQ)
caused by coordinate-wise gradient estimation used in [8].

Note that the natural evolutionary strategy (NES) [18] uses

a central difference based gradient estimator requiring 2Q
queries. By contrast, RGE uses a forward difference based

random gradient estimator, yielding Q + 1 query counts,

leading to higher query efficiency.

With the aid of RGE, the solution to problem (14) can

now be obtained via stochastic gradient descent-like meth-

ods. However, it suffers from extremely high iteration and

function query complexity due to the non-linearity of f
as well as the iterative nature of ADMM. To sidestep this

computational bottleneck, we propose the use of the lin-

earized ADMM algorithm [36] in ZO-ADMM with RGE,

and thus it enjoys dual advantages of gradient-free oper-

ation and linearization of the loss function. By lineariza-

tion, the loss function f(x0 + δ, t) in problem (14) is re-

placed with its first-order Taylor expansion plus a regu-

larization term (known as Bregman divergence), that is,

∇̂f(δk+x0, t))
T (δ−δk)+ 1

2‖δ−δk‖2
G

, where G is a pre-

defined positive definite matrix, and ‖x‖2
G

= xTGx. We

choose G = ηkI where 1/ηk > 0 is a decaying parameter,

e.g., ηk = α
√
k for a given constant α > 0. The Bregman

divergence term is used to stabilize the convergence of δ.

Combining linearization and RGE, problem (14) now

takes the following form:

minimize
δ

(∇̂f(δk + x0, t))
T (δ − δ

k)

+ηk

2 ‖δ − δk‖22 + ρ
2‖δ − b‖22,

(16)

which yields a quadratic programming problem with the

following closed-form solution:

δ
k+1 = (1/ (ηk + ρ))

(

ηkδ
k + ρb− ∇̂f(δk + x0, t)

)

. (17)

Note that Eqn. (17) can be calculated with only one step

of gradient estimation, which is a significant improvement

on query efficiency compared with solving problem (14)

using gradient descent method with thousands of random

estimations. The convergence of the linearized ADMM for

non-convex problems is proved in [25].

4.2.2 Bayesian Optimization

In addition to RGE, BO is an alternative approach to solve

problem (14). We model l(δ) := f(x0 + δ, t) + ρ
2‖δ−b‖22

as a Gaussian process with a prior distribution l(·) ∼
N (µ0, κ(·, ·)), where µ0 = 0 in practice and κ(·, ·) is a posi-

tive definite kernel [33]. Consider a finite collection of noisy

observations Dk = {y1, . . . , yk}, where yi ∼ N (l(δi), σ2
n),

and σ2
n is the noise variance. The posterior probability of

a new function l(δ) evaluation given Dk is a Gaussian dis-

tribution with mean µ and variance σ, that is l(δ)|Dk ∼
N (µ, σ2), where

µ = κ
T [K+ σ2

nI]
−1y, (18)

σ2 = κ(δ, δ)− κ
T [K+ σ2

nI]
−1

κ, (19)

Kij = κ(δi, δj), κ is a vector of covariance terms between

{δi}ki=1 and δ, namely, κi = κ(δi, δ).

We choose the kernel function κ(·, ·) as the ARD Matérn

5/2 kernel [35, 33],

κ(x,y) = θ20exp(−
√
5r)(1 +

√
5r +

5

3
r2), (20)

r2 =

d
∑

i=1

(xi − yi)
2/θ2i , (21)

where {θi}di=0 are hyperparameters. Note that κ(δ, δ) = θ20 .

To determine the hyper-parameters θ = {{θi}di=0, σ
2
n},

we minimize the negative log marginal likelihood

log p(Dk|θ) [33],

minimize
θ

L(θ) �
1

2
log |K+ σ2

nI| (22)

+
1

2
y⊤

(

K+ σ2
nI
)−1

y,

where y = [y1 y2 . . . yk]
⊤. This can be achieved by a

standard gradient descent routine θ ← θ−η∂L/∂θ with a

sufficiently small learning rate η.

In the setting of BO, the solution to problem (14) is often

acquired by maximizing the expected improvement (EI). The
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EI acquisition function is defined as [33]

δ
k+1 = argmaxEI(δ)

= argmaxEl(δ)|Dk

[(

l+ − l(δ)
)

I(l(δ) ≤ l+)
]

,

= argmax
δ

(l+ − µ)Φ

(

l+ − µ

σ

)

+ σφ

(

l+ − µ

σ

)

,

(23)

where l+ denotes the best observed value, and I(l(δ) ≤
l+) = 1 if l(δ) ≤ l+, and 0 otherwise. Φ and φ denote the

CDF and PDF of the standard normal distribution, respec-

tively. We refer readers to the supplementary material for the

detailed derivation of Eq. (23). We obtain δk+1 through the

projected gradient descent method,

δ̂
(k+1) = δ

(k) + η∇δ=δ(k)EI(δ), (24)

δ
(k+1) = Proj(x0 + δ) ∈ [0, 1]d, ‖δ‖∞ ≤ ǫ

(

δ̂
(k+1)

)

. (25)

The projection is introduced to ensure the feasibility of the

next query point in BO.

5. Customized Score-based and Decision-based

Black-box Attacks

For the score-based black-box attack, problem (1) with

loss function (2) can be naturally solved through the general

ADMM framework.

In the decision-based black-box attack, the form of the

loss function (3) is non-smooth with discrete outputs. To

overcome the discontinuity in Eqn. (3), a smoothing version

of (3), denoted by fµ with smoothing parameter µ > 0
[14, 30], is taken into consideration,

fµ(x0 + δ, t) = Eu∈Ub
[f(x0 + δ + µu, t)] , (26)

where Ub is a uniform distribution within the unit Eu-

clidean ball, or u can follow a standard Gaussian dis-

tribution [18]. The rational behind the smoothing tech-

nique in (26) is that the convolution of two functions, i.e.,
∫

u
f(x0 + δ + µu, t)p(u)du, is at least as smooth as the

smoothest of the two original functions [11]. Therefore,

when p is the density of a random variable with respect

to Lebesgue measure, the loss function (26) is then smooth.

In practice, we consider an empirical Monte Carlo approxi-

mation of (26)

fµ(x0 + δ, t) ≈ 1

N

N
∑

i=1

f(x0 + δ + µui, t), (27)

where {ui} are N i.i.d. samples drawn from Ub. With the

smoothed loss function as expressed in Eqn. (27), problem

(1) can be solved by the proposed general ADMM frame-

work. To initialize ADMM, we initialize the perturbation δ

so that the initial perturbed image belongs to the target class,

yielding a benefit of reducing query complexity compared to

the initialization with an arbitrary image [5].

6. Performance Evaluation

In this section, the experimental results of the score-based

and decision-based black-box attacks are demonstrated. We

compare the proposed ADMM-based framework with var-

ious attack methods on three image classification datasets,

MNIST [23], CIFAR-10 [20] and ImageNet [10]. The results

of state-of-the-art white-box attack (i.e., C&W attack) are

also provided for reference.

We train two networks for MNIST and CIFAR-10

datasets, respectively, which can achieve 99.5% accuracy

on MNIST and 80% accuracy on CIFAR-10. The model

architecture has four convolutional layers, two max pooling

layers, two fully connected layers and a softmax layer. For

ImageNet, we utilize a pre-trained Inception v3 network [37]

instead of training our own model, which can achieve 96%

top-5 accuracy. All experiments are conducted on machines

with NVIDIA GTX 1080 TI GPUs.

6.1. Evaluation on MNIST and CIFAR-10

In the evaluation on MNIST and CIFAR-10, 200 correctly

classified images are selected from MNIST and CIFAR-10

test datasets, respectively. For each image, the target labels

are set to the other 9 classes and a total of 1800 attacks are

performed for each attack method.

The implementations of C&W (white-box) attack [6] and

ZOO (black-box) attack [8] are based on the GitHub code

released by the authors1. For ZOO attack, we use ZOO-

Adam with default Adam parameters. For the transfer attack

[31], we apply C&W attack to the surrogate model with κ =
20 to improve the attack transferability and 2,000 iterations

in each binary search step. In the proposed ZO-ADMM

attack1, the sampling number in random gradient estimation

as defined in Eqn. (15), Q, is set to 20 and the sampling

number for the decision-based smoothed loss function (27),

N , is set to 10. We set ρ = 10 and γ = 1 for MNIST,

ρ = 2000 and γ = 10 for CIFAR-10, and ρ = 1000 and

γ = 1 for ImageNet. ǫ is set to 1 for MNIST and CIFAR-10
2 and 0.05 for ImageNet. In Eq. (15), we set ν = 0.5 for

three datasets. The parameter µ in Eq. (27) is set to 1 for

MNIST, 0.1 for CIFAR-10, and 0.01 for ImageNet.

The experimental results are shown in Table 1. Besides

the attack success rate (ASR) and the ℓp norms, we report the

query number required to achieve the first successful attack,

which characterizes how fast the generated adversarial per-

turbation can mislead DNNs. We observe that the transfer

attack suffers from low ASR and large ℓ2 distortion. Both the

ZOO attack and the proposed ZO-ADMM attack with RGE

can achieve high ASR and competitive ℓ2 distortion close to

the C&W white-box attack. Compared with the ZOO attack,

1Codes are available at https://github.com/LinLabNEU/

Blackbox_ADMM.
2This setting is intended to make a fair comparison to the pure ℓ2-norm

attack framework ZOO.

126



Table 1. Performance evaluation of adversarial attacks on MNIST and CIFAR-10.

Data set Attack method ASR
ℓ1

distortion

ℓ2
distortion

ℓ∞
distortion

Query count on

initial success

Reduction ratio on

query count

MNIST

white

-box

C&W white-box attack [6] 100% 22.14 1.962 0.5194 - -

Transfer attack (via C&W) [31] 30.6% 65.2 4.545 0.803 - -

score

-based

ZOO attack [8] 98.8% 26.78 1.977 0.522 12,161 0.0 %

score-based ZO-ADMM attack 98.3% 26.23 1.975 0.513 493.6 95.9%

score-based BO-ADMM attack 87% 93.6 7.7 0.71 52.1 99.6%

decision

-based

boundary attack [5] 99% 32.9 2.21 0.563 25,328a 0%

decision-based ZO-ADMM attack 100 % 30.48 2.166 0.548 7,603 a 62%

CIFAR-10

white

-box

C&W white-box attack [6] 100 % 11.7 0.332 0.0349 - -

Transfer attack (via C&W) [31] 8.5% 103.6 3.845 0.421 - -

score

-based

ZOO attack [8] 97.6 % 15.2 0.361 0.0405 9982 0.0 %

score-based ZO-ADMM attack 98.7 % 13.1 0.417 0.0392 421 95.7%

score-based BO-ADMM attack 84.1% 148 5.29 0.62 46.3 99.6%

decision

-based

boundary attack [5] 100% 19.4 0.421 0.045 16,720 a 0%

decision-based ZO-ADMM attack 100% 17.25 0.415 0.0413 6,213 a 63%

a As the decision-based attacks start from images in the target class, it achieves initial success immediately. Therefore, the query count on the initial

success of the decision-based attack actually means the query number when it achieves the reported ℓ2 distortion.

Query=0, 
Distortion=10.2

Query=3025, 
Distortion=7.1

Query=6050, 
Distortion=4.6

Query=12100, 
Distortion=2.59

Query=18150, 
Distortion=1.7

Query=36300, 
Distortion=1.27

original

(a) An adversarial example evolution for MNIST starting from

an image in the target class.

Query=0, 
Distortion=15.2

Query=3025, 
Distortion=5.8

Query=6050, 
Distortion=3.17

Query=12100, 
Distortion=1.32

Query=18150, 
Distortion=0.79

Query=36300, 
Distortion=0.64 original

(b) An adversarial example evolution for CIFAR-10 starting from

an image in the target class.

Figure 1. Adversarial examples generated by the proposed decision-

based ZO-ADMM attack on MNIST and CIFAR-10.

the score-based ZO-ADMM attack requires fewer queries

to obtain the first successful adversarial example. The query

count in ZO-ADMM attack with RGE is reduced by 95.9%

and 95.7% on MNIST and CIFAR-10, respectively. The

reduction of query number is achieved by Eq. (17) in ZO-

ADMM, which only requires one step of gradient estimation

to solve the approximation problem instead of thousands of

steps to solve the original problem. We also observe that the

score-based BO-ADMM attack can achieve smaller query

number compared with the RGE method, but it causes much

larger ℓp distortion. The reason is that BO-ADMM does not

have very precise control for the perturbation. So it requires

larger perturbation to mislead the DNN model. Although

BO-ADMM may have its limitations, we find that combin-

ing the advantage of BO- and ZO-ADMM can lead to more

query-efficient attacks. Please refer to the BO-ZO-ADMM

section in the appendix.

We notice that the decision-based ZO-ADMM attack

achieves an ℓ2 distortion slightly larger than the score-based

attack with more queries as shown in Table 1. This is not sur-

prising, since only the hard label outputs are available in the

decision-based attack, which is more difficult to be optimized

than the score-based attack. Although the ℓ2 distortion is a bit

larger, the perturbations are still visually indistinguishable.

We compare the decision-based ZO-ADMM attack with the

boundary attack [5]. As demonstrated in Table 1, the queries

of the decision-based ZO-ADMM attack is about 60% less

than that of the boundary attack to achieve the same level ℓ2
distortion. We show the evolution of several adversarial ex-

amples in the decision-based attack versus the query number

in Fig. 1. The decision-based attack starts from an image in

the target class. Then it tries to decrease the ℓ2 norm while

keeping the classified label unchanged. After about 20,000

queries, the example is close to the original image with a

satisfied ℓ2 distortion.

6.2. Evaluation on ImageNet

We perform targeted and untargeted attacks in the score-

based and decision-based settings on ImageNet. 100 cor-

rectly classified images are randomly selected. For each

image in targeted attack, 9 random labels out of 1000 classes

are selected to serve as the targets. We do not perform the

transfer attack since it does not scale well to ImageNet due

to training of the surrogate model. Instead, we provide the

results of new baselines on ImageNet, including the query-

limited attack as well as the label-only attack proposed in

[18], and the bandit optimization based attack with time and

data-dependent priors (named as BanditsTD) [19]. The query-

limited and BanditsTD attacks are score-based attacks. The

label-only attack is a decision-based attack.
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Table 2. Performance evaluation of adversarial attacks on ImageNet.

Untargeted attack Targeted attack

Attack method ASR
Query count on

initial success
Reduction ratio ASR

Query count on

initial success
Reduction ratio

score-based

C&W white-box attack [6] 100% - - 99% - -

ZOO attack [8] 90% 15631 0.0% 78% 2.11× 106 0.0%

Query-limited attack [18] 100% 4785 69.4% 98% 34128 98.4%

BanditsTD attack [19] 94% 1259 92% - a - -

score-based ZO-ADMM attack 98% 891 94.3% 97% 16058 99.2%

decision-based
Label only [18] - b - - 92 % 1.89× 106 c 10.4%

decision-based ZO-ADMM attack 100% 11742 c 24.9% 94% 1.52× 106 c 28%

a It mainly explores untargeted attack. b The label only attack mainly explores targeted attack. c The query count on initial success for the

decision-based attack means the query number when it achieves the same ℓ2 distortion with the ZOO attack on its initial success.

The experimental results are summarized in Table 2. For

score-based attacks, we can observe that the score-based ZO-

ADMM attack can achieve a high ASR with fewer queries

than the other attacks. It reduces the query number on initial

success by 94.3% and 99.2% for untargeted and targeted

attacks, respectively, compared with the ZOO attack. For

decision-based attacks, the ZO-ADMM attack can obtain a

high ASR with fewer queries compared with the label-only

attack or even the ZOO attack using score-based information.

Some adversarial examples generated by the ZO-ADMM

attack are demonstrated in the supplementary material. More

experimental results including the comparison with Auto-

Zoom [39] and the boundary method [5] method are demon-

strated in the Appendix.

6.3. Convergence of the ZO-ADMM Attack

In Fig. 2, we demonstrate the convergence of the proposed

ZO-ADMM targeted black-box attack, where the average

ℓ2 distortion of 9 targeted adversarial examples versus the

query number is presented. As we can see, since we initial-

ize the adversarial distortion from zeros, the score-based

ZO-ADMM attack increases ℓ2 distortion until a successful

adversarial example is found. After that, it tries to decrease

the ℓ2 distortion but keeps the target label unchanged. For

the decision-based attack, Fig 2 shows that the ℓ2 distortion

is initially large as ZO-ADMM starts from an image in the

target class instead of the original image. The resulting ℓ2
distortion then decreases as the query number increases. We

highlight that the ZO-ADMM attack is able to reach the

successful attack with hundreds of queries on MNIST or

CIFAR-10 and tens of thousands of queries on ImageNet,

which significantly outperforms the ZOO attack. Besides Fig.

2 demonstrating the ℓ2 distortion versus query number, we

present the ℓ2 distortion versus ADMM iteration number in

the supplementary material and similar results can be drawn.

6.4. Evaluation for Various ℓp Norms

In the previous experiments, we mainly consider the case

of D(z) = ‖z‖22 for a fair comparison with other white-box

and black-box algorithms. However, we highlight that the

ZO-ADMM method is able to optimize various ℓp norms,

not only ℓ2 norm. In Table 3, we present the experimental
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Figure 2. Convergence of the ZO-ADMM attack.

Table 3. Performance evaluation of the ZO-ADMM attacks on

MNIST for different �p norms.

Attack method ASR ℓ0 ℓ1 ℓ2

ZO-ADMM ℓ0 100% 18.5 12.6 9.72

ZO-ADMM ℓ1 100% 465 10.5 2.71

ZO-ADMM ℓ2 100% 483 22.09 1.93

results for different ℓp norms when solving problem (11).

Here we focus on three score-based black-box attacks with

ZO-ADMM by minimizing the ℓ0, ℓ1 and ℓ2 distortion, re-

spectively. As we can see, our proposed method is well

adapted to different ℓp norms in the design of black-box

adversarial examples.

7. Conclusion

In this paper, we propose a general framework to de-

sign norm-ball bounded black-box adversarial examples by

leveraging an operator splitting method (namely, ADMM),

together with the gradient-free operations including random

gradient estimation and Bayesian optimization. The pro-

posed framework can be applied to both score-based and

decision-based settings. Compared to state-of-the-art black-

box attacks, our approach achieves better query efficiency

without losing the attack performance in terms of attack

success rate as well as ℓp-norm distortion.
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